泉州七中 2020-2021 学年度上学期高二年数学周练(十五)

命题人: 饶真平 卢盛林 20210109

一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)

1. 若函数 f(x)满足 $f(x) = \frac{1}{2}x^3 - f'(1)x^2 - x$,则 f'(1)的值为(

2. 设等比数列 $\{a_n\}$ 的前n项和为 S_n ,若 $S_{10}: S_5 = 1:2$,则 $S_{15}: S_5$ 等于()

- C. 2:3

3. 己知曲线 $f(x) = a \ln x + x^2$ 在 x = 1 处的切线方程为 x + y + b = 0 ,则 ab = 0

- A. 3
- В. 5
- C. 6

4. 数列 $\{a_n\}$ 满足 $\log_2 a_n - 1 = \log_2 a_{n+1} \ (n \in \mathbf{N}^*)$,若 $a_1 + a_3 + \dots + a_{2n-1} = 2^n$,

则 $\log_2(a_2+a_4+a_6+\cdots+a_{2n})$ 的值是(

- A. n-1
- B. n+1

5. 若函数 $f(x) = kx - \ln x + \frac{1}{x}$ 在区间 $(1,+\infty)$ 单调递增,则 k 的取值范围是(

- A. $[\frac{1}{2}, +\infty)$ B. $[1, +\infty)$ C. $[2, +\infty)$ D. $(-\infty, -2]$

6. 两动直线 y = kx + 1 与 $y = -\frac{2}{k}x - 1$ 的交点轨迹是 ()

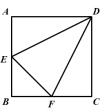
A. 椭圆的一部分

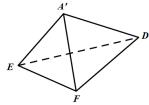
B. 双曲线的一部分

C. 抛物线的一部分

D. 圆的一部分

7. 如图,边长为2的正方形 ABCD中,点E,F分别是 AB,BC的 中点,将 $\triangle ADE$ 、 $\triangle EBF$ 、 $\triangle FCD$ 分别沿DE、EF、FD折起, $_{E}$ 使得 $A \times B \times C$ 三点重合于点A',若四面体A'EFD的四个顶点在 同一个球面上,则该球的表面积为(





- B. 6π
- D. 10π

8. 已知 F_1 , F_2 分别是双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点,点 P 在双曲线右支上且不与顶点重合,过 F_2 作 $\angle F_1 P F_2$ 的角平分线的垂线,垂足为 A . 若 $\left| F_1 A \right| = \sqrt{5}b$,则该双曲线离心率的取值范围为(

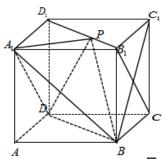
- B. $\left(\sqrt{2}, \frac{3}{2}\right)$ C. $\left(\sqrt{2}, \sqrt{3}\right)$ D. $\left(\frac{3}{2}, \sqrt{3}\right)$

二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的 得5分,有选错的得0分,部分选对的得3分.)

- 9. 下列命题正确的是()
 - A. 若 $f'(x_0) = 0$,则函数 f(x) 在 x_0 处无切线
 - B. 函数 y = f(x) 的切线与函数的图象可以有两个公共点
 - C. 曲线 y = f(x) 在 x = 1 处的切线方程为 2x y = 0,则当 $\Delta x \to 0$ 时, $\frac{f(1) f(1 + \Delta x)}{2\Delta x} = 1$
 - D. 若函数 f(x) 的导数 $f'(x) = x^2 2$,且 f(1) = 2,则 f(x) 的图象在 x = 1 处的切线方程为 x + y 3 = 0

10. 如图,在棱长为1的正方体 $ABCD - A_iB_iC_iD_i$ 中, P 为线 段 B_1D_1 上一动点 (包括端点),则以下结论正确的有(

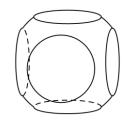
- A. 三棱锥 $P A_1 BD$ 的体积为定值 $\frac{1}{2}$
- B. 直线 PA_1 与平面 A_1BD 所成角的正弦值的范围为 $\frac{\sqrt{3}}{3}$, $\frac{\sqrt{6}}{3}$



- C. 过点 P 平行于平面 A_1BD 的平面被正方体 $ABCD A_1B_1C_1D_1$ 截得的多边形的面积为 $\frac{\sqrt{3}}{2}$
- D. 当点 $P = B_1$ 重合时,三棱锥 $P A_1BD$ 的外接球的体积为 $\frac{\sqrt{3}}{2}\pi$
- 11. 已知函数 $f(x) = -x^3 + 2x^2 x$, 若过点 P(1,t) 可作曲线 y = f(x) 的三条切线,则t 的取值可以是(
- C. $\frac{1}{28}$
- 12. 已知函数 $f(x) = e^x \ln x 2$,则下列说法正确的是(
 - A. f(x) 有且仅有一个极值点

- 三、填空题(本大题共4小题,每小题5分,共20分,若有两空,则第一空2分,第二空3分.)
- 13. 已知数列 $\{a_n\}$ 的前n项的和为 $S_n = n^2 + n + 1$, $b_n = (-1)^n (a_n 2)(n \in \mathbf{N}^*)$,

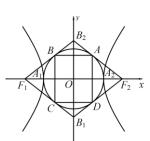
14. 某同学在参加《通用技术》实践课时,制作了一个实心工艺品(如图所示).该工艺 品可以看成一是个球体被一个棱长为8的正方体的6个面所截后剩余的部分(球心与正 方体的中心重合). 若其中一个截面圆的周长为 6π ,则该球的半径为



现给出定义: 球面被平面所截得的一部分叫做球冠. 截得的圆叫做球冠的底, 垂直于截面的直径被截得的一段叫 做球冠的高. 如果球面的半径是R, 球冠的高是h, 那么球冠的表面积计算公式是 $S=2\pi Rh$. 由此可知,该实心工艺品的表面积是_____.

若 f(x) ≥ ax 在 $(0,+\infty)$ 上恒成立,则实数 a 的取值范围为_____

16. 如图,双曲线 $\frac{x^2}{c^2} - \frac{y^2}{L^2} = 1(a > 0, b > 0)$ 的两顶点为 A_1, A_2 ,虚轴两端点为 B_1, B_2 , 两焦点为 F_1 , F_2 , 若以 A_1A_2 为直径的圆内切于菱形 $F_1B_1F_2B_2$, 切点分别为A,B,C,D.



四、解答题(本大题共 6 小题, 共 70 分. 解答应写出必要文字说明、证明过程或演算步骤. 第 17 小题满分 10 分, 其他小题满分 12 分.)

- 17. (本小题满分 10 分) 在 $\triangle ABC$ 中,角 A,B,C 的对边分别为 a,b,c , $\frac{\cos C}{c} + \frac{\cos A}{a} = \frac{\sin B}{\sqrt{3}\sin A}$.
 - (I) 求*c*的值;
 - (II) 若 $C = \frac{\pi}{3}$, 求 $\triangle ABC$ 面积的最大值.

18. (本小题满分 12 分) 已知两个定点 A(0,4), B(0,1), 动点 P 满足 |PA|=2|PB|. 设动点 P 的轨迹为曲线 E,直线 l:y=kx-4.

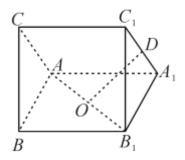
- (I) 求曲线 E 的轨迹方程;
- (II) 若l 与曲线E 相切,求l 的方程;
- (III) 若l与曲线E交于不同的C,D两点,且 $\angle COD = 120^{\circ}$ (O为坐标原点),求直线l的斜率;

19. (本小题满分 12 分) 已知等差数列 $\{a_n\}$ 满足公差 d>0,前 n 项的和为 S_n , $S_3=2a_4$, a_1 , a_3+2 , $2a_4$ 成等比数列.

- (I) 求 $\{a_n\}$ 的通项公式;
- (II) 若 $b_n = \frac{(-1)^n (2n+5)}{a_n a_{n+1}}$, 求数列 $\{b_n\}$ 的前100项的和 T_{100} .

20. (本小题满分 12 分) 如图,三棱柱 $ABC-A_1B_1C_1$ 中, $\triangle ABC$ 是边长为 2 的正三角形, $AB\perp BB_1$, $BB_1=2$,

- O, D 分别为棱 AB_1 , A_1C_1 的中点.
 - (I) 求证: *OD*//平面 *BCC*₁*B*₁;
 - (II) 若平面 ABC 上平面 ABB_1A_1 , 求直线 OD 与平面 AB_1C 所成角的正弦值.



21. (本小题满分 12 分) 已知函数 $f(x) = \frac{1}{2}x^2 - a \ln x - \frac{1}{2}(a \in \mathbf{R}, a \neq 0)$.

- (I) 当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;
- (II) 求函数f(x)的单调区间;
- (III) 若对任意的 $x \in [1,+\infty)$,都有 $f(x) \ge 0$ 成立,求a的取值范围.

22. (本小题满分 12 分) 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的离心率为 $\frac{\sqrt{3}}{2}$,且经过点(0,1).

- (I) 求椭圆C的方程.
- (II) 直线 y = kx + m 与椭圆 C 交于 A, B 两点.
 - ①求|AB| (用实数k,m表示);
 - ②O为坐标原点,若 $\overrightarrow{OA} \cdot \overrightarrow{AB} = 0$,且 $\frac{|AB|}{|OA|} = \frac{3}{2}$,求 $\triangle OAB$ 的面积.

泉州七中 2020-2021 学年度上学期高二年数学周练(十五)参考答案

一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)

1-4. CDCA 5-8. CABB

8. 【解析】 F_1 , F_2 是双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左右焦点,延长 $F_2 A \stackrel{?}{\sim} PF_1$ 于点Q,

 $: PA \in \angle F_1 PF_2$ 的角平分线, $: |PQ| = |PF_2|$, 又 $: \triangle P$ 在双曲线上,

$$|PF_1| - |PF_2| = 2a$$
, $|PF_1| - |PQ| = |QF_1| = 2a$,

又: O 是的 F_1F_2 中点,A 是 F_2Q 的中点,: OA 是 $\triangle F_1F_2Q$ 的中位线,

∴
$$|QF_1| = 2a = 2|OA|$$
, $\square |OA| = a$, $\triangle F_1OA + \square |OA| = a$, $|F_1A| = \sqrt{5}b$, $|OF_1| = c$,

由三角形两边之和大于第三边得: $a+c>\sqrt{5}b$, 即 $(a+c)^2>5b^2$, 即 $a^2+c^2+2ac>5(c^2-a^2)$,

两边同除以
$$a^2$$
并化简得: $2e^2-e-3<0$,解得: $-1,又 $\cdot\cdot\cdot e>1$, $\cdot\cdot 1,$$

在
$$\triangle F_1OA$$
 中,由余弦定理可知, $\cos \angle AF_1O = \frac{\left|AF_1\right|^2 + \left|F_1O\right|^2 - \left|AO\right|^2}{2\left|AF_1\right| \cdot \left|F_1O\right|} = \frac{5b^2 + c^2 - a^2}{2\sqrt{5}bc}$,

在
$$\Delta F_1 A F_2$$
 中, $\cos \angle A F_1 O = \frac{\left|AF_1\right|^2 + \left|F_1 F_2\right|^2 - \left|AF_2\right|^2}{2\left|AF_1\right| \cdot \left|F_1 F_2\right|} = \frac{5b^2 + 4c^2 - \left|AF_2\right|^2}{4\sqrt{5}bc}$,

即
$$\frac{5b^2+c^2-a^2}{2\sqrt{5}bc} = \frac{5b^2+4c^2-\left|AF_2\right|^2}{4\sqrt{5}bc}$$
,又: $b^2=c^2-a^2$,得 $\left|AF_2\right|^2=7a^2-3c^2$,

$$\mathbb{X} :: \angle OAF_2 > \frac{\pi}{2}, :: |OA|^2 + |AF_2|^2 < |OC|^2, \ \mathbb{H} \ a^2 + 7a^2 - 3c^2 < c^2, :: e > \sqrt{2}, \ \mathbb{H} \ e \in \left(\sqrt{2}, \frac{3}{2}\right).$$

二、选择题(本题共 4 小题,每小题 5 分,共 20 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的 得 5 分,有选错的得 0 分,部分选对的得 3 分.)

9. BD 10. BCD 11. CD 12. AC

12. 【解析】由题意得,f(x) 的定义域为 $(0,+\infty)$,且 $f'(x) = e^x - \frac{1}{x}$,设h(x) = f'(x),则 $h'(x) = e^x + \frac{1}{x^2} > 0$,

$$\therefore h(x)$$
 在 $(0,+\infty)$ 递增,又 $h\left(\frac{1}{2}\right) = \sqrt{e} - 2 < 0$, $h(1) = e^1 - 1 > 0$, $\therefore h(x_0)$ 存在唯一零点 x_0 ,

当 $0 < x < x_0$ 时,f'(x) < 0, f(x)单调递减,当 $x > x_0$ 时,f'(x) > 0, f(x)单调递增,

 $\therefore f(x)$ 有唯一极小值点 x_0 , 故选项 A 正确.

令
$$f'(x_0) = e^{x_0} - \frac{1}{x_0} = 0$$
,得 $e^{x_0} = \frac{1}{x_0}$, 两边同时取对数可得 $x_0 = \ln \frac{1}{x_0} = -\ln x_0$.

又
$$\frac{1}{2} < x_0 < 1$$
, ∴ $f(x_0) > 0$, 即 $[f(x)]_{min} > 0$, ∴ $f(x)$ 无零点, 故选项 B 错误.

曲
$$f(x_0) = \frac{1}{x_0} + x_0 - 2, \frac{1}{2} < x_0 < 1$$
,可设 $g(x) = \frac{1}{x} + x - 2$,则 $g'(x) = -\frac{1}{x^2} + 1$.

当
$$\frac{1}{2}$$
< x <1时, $g'(x)$ < 0 , $\therefore g(x)$ 在 $\left(\frac{1}{2},1\right)$ 上单调递减.

$$\therefore g(1) < g(x) < g(\frac{1}{2})$$
,即 $0 < f(x_0) < \frac{1}{2}$,故选项 C 正确,选项 D 错误,

三、填空题(本大题共4小题,每小题5分,共20分,若有两空,则第一空2分,第二空3分.)

13.
$$a_n = \begin{cases} 3 & n=1 \\ 2n & n \ge 2 \end{cases}$$
; 49 14. 5; 94 π 15. 1; $(0, \frac{2}{e}]$ 16. $\frac{\sqrt{5}+1}{2}$; $\frac{\sqrt{5}+2}{2}$

16. 【解析】直线
$$B_2F_1$$
 的方程为 $bx-cy+bc=0$,所以 O 到直线的距离为 $\frac{|bc|}{\sqrt{b^2+(-c)^2}}=a$,

所以
$$(c^2-a^2)c^2=(2c^2-a^2)a^2$$
,所以 $c^4-3a^2c^2+a^4=0$,即 $e^4-3e^2+1=0$,

因为
$$e > 1$$
,解得 $e^2 = \frac{3+\sqrt{5}}{2}$, $e = \frac{\sqrt{5}+1}{2}$;

菱形
$$F_1B_1F_2B_2$$
 的面积 $S_1=2bc$,设矩形 $ABCD$, $BC=2m, BA=2n$, 所以 $\frac{m}{n}=\frac{c}{b}$,

因为
$$m^2 + n^2 = a^2$$
, 所以 $m = \frac{ac}{\sqrt{b^2 + c^2}}$, $n = \frac{ab}{\sqrt{b^2 + c^2}}$,

所以矩形
$$ABCD$$
 的面积 $S_2 = 4mn = \frac{4a^2bc}{b^2+c^2}$,所以 $\frac{S_1}{S_2} = \frac{2bc}{\frac{4a^2bc}{b^2+c^2}} = \frac{b^2+c^2}{2a^2} = \frac{2c^2-a^2}{2a^2} = e^2-\frac{1}{2}$,

曲
$$e^2 = \frac{3+\sqrt{5}}{2}$$
,所以 $\frac{S_1}{S_2} = e^2 - \frac{1}{2} = \frac{3+\sqrt{3}}{2} - \frac{1}{2} = \frac{\sqrt{5}+2}{2}$

四、解答题(本大题共 6 小题, 共 70 分. 解答应写出必要文字说明、证明过程或演算步骤. 第 17 小题满分 10 分, 其他小题满分 12 分)

17. 解: (I) 因为
$$\frac{\cos C}{c} + \frac{\cos A}{a} = \frac{\sin B}{\sqrt{3}\sin A}$$
,所以 $\frac{a^2 + b^2 - c^2}{2abc} + \frac{b^2 + c^2 - a^2}{2abc} = \frac{b}{\sqrt{3}a}$,解得 $c = \sqrt{3}$; …5 分

(II) 因为
$$C = \frac{\pi}{3}$$
,所以由正弦定理得 $\frac{ab}{\sin A \sin B} = \left(\frac{c}{\sin C}\right)^2 = 4$,

$$\therefore ab = 4\sin A\sin B = 4\sin A\sin\left(\frac{2\pi}{3} - A\right) = 4\sin A\left(\frac{\sqrt{3}}{2}\cos A + \frac{1}{2}\sin A\right)$$

$$=\sqrt{3}\sin 2A+1-\cos 2A=2\sin\left(2A-\frac{\pi}{6}\right)+1$$
,

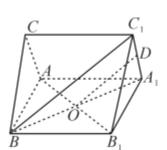
18. 解: (I) 设点
$$P$$
 的坐标为 (x,y) ,由 $|PA|=2|PB|$ 可得, $\sqrt{x^2+(y-4)^2}=2\sqrt{x^2+(y-1)^2}$,…… 2分整理可得 $x^2+y^2=4$,所以曲线 E 的轨迹方程为 $x^2+y^2=4$. …… 4分

(III) 依题意,
$$OC = OD = 2$$
,且 $\angle COD = 120^\circ$,则点 O 到 CD 边的距离为1 …… 10 分即点 $O(0,0)$ 到直线 $l: kx-y-4=0$ 的距离 $\frac{4}{\sqrt{k^2+1}}=1$,解得 $k=\pm\sqrt{15}$ …… 12 分所以直线 l 的斜率为 $\pm\sqrt{15}$.

$$(II) \quad b_n = \frac{(-1)^n (2n+5)}{a_n a_{n+1}} = \frac{(-1)^n (2n+5)}{4(n+2)(n+3)} = \frac{(-1)^n}{4} \left(\frac{1}{n+2} + \frac{1}{n+3} \right), \qquad 9$$

$$\text{FT Ly } T_{100} = \frac{1}{4} \left[-\left(\frac{1}{3} + \frac{1}{4} \right) + \left(\frac{1}{4} + \frac{1}{5} \right) - \left(\frac{1}{5} + \frac{1}{6} \right) + \dots - \left(\frac{1}{101} + \frac{1}{102} \right) + \left(\frac{1}{102} + \frac{1}{103} \right) \right]$$

$$= \frac{1}{4} \left(-\frac{1}{3} + \frac{1}{103} \right) = -\frac{25}{309}. \qquad 12$$



(II) 若平面 ABC 上平面 ABB_1A_1 , 如图,取 AB 的中点 P, 因为 $\triangle ABC$ 是正三角形,所以 $CP \perp AB$.

故以PB, PO, PC 所在的直线分别为x, y, z 轴建立空间直角坐标系,

因为 $\triangle ABC$ 是边长为2的正三角形, $AB \perp BB_1$, $BB_1 = 2$,

$$\operatorname{AV} \overrightarrow{AB_1} = \left(2, 2, 0\right), \quad \overrightarrow{AC} = \left(1, 0, \sqrt{3}\right), \quad \overrightarrow{OD} = \left(-\frac{1}{2}, 1, \frac{\sqrt{3}}{2}\right).$$

设平面
$$AB_1C$$
 的一个法向量为 $\vec{n} = (x, y, z)$,则由
$$\begin{cases} \vec{n} \cdot \overrightarrow{AB_1} = (x, y, z) \cdot (2, 2, 0) = 2x + 2y = 0 \\ \vec{n} \cdot \overrightarrow{AC} = (x, y, z) \cdot (1, 0, \sqrt{3}) = x + \sqrt{3}z = 0 \end{cases}$$

令
$$x=3$$
,得平面 AB_1C 的一个法向量为 $\vec{n}=(3,-3,-\sqrt{3})$; ········10 分 \vec{r}

设直线
$$OD$$
 与平面 AB_1C 所成角的大小为 θ ,则 $\sin \theta = \left| \frac{\vec{n} \cdot \overrightarrow{OD}}{|\vec{n}| |\overrightarrow{OD}|} \right| = \frac{\sqrt{42}}{7}$.

故直线OD与平面ABC所成角的正弦值为 $\frac{\sqrt{42}}{7}$12分

21. 解: (I)
$$a = 3$$
时, $f(x) = \frac{1}{2}x^2 - 3\ln x - \frac{1}{2}$, $f(1) = 0$ $f'(x) = x - \frac{3}{x}$, $f'(1) = -2$
∴ $y = f(x)$ 在点 $(1, f(1))$ 处的切线方程为 $y = -2x + 2 + 2 + \dots$ 3 分

(II)
$$f'(x) = x - \frac{a}{x} = \frac{x^2 - a}{x} (x > 0)$$

①当
$$a < 0$$
时, $f'(x) = \frac{x^2 - a}{x} > 0$ 恒成立,函数 $f(x)$ 的递增区间为 $(0, +\infty)$ … 5分

②当
$$a > 0$$
时,令 $f'(x) = 0$,解得 $x = \sqrt{a}$ 或 $x = -\sqrt{a}$

所以函数f(x)的递增区间为 $\left(\sqrt{a},+\infty\right)$,递减区间为 $\left(0,\sqrt{a}\right)$

(III) 对任意的
$$x \in [1, +\infty)$$
,使 $f(x) \ge 0$ 成立,只需任意的 $x \in [1, +\infty)$, $f(x)_{\min} \ge 0$

①当
$$a < 0$$
时, $f(x)$ 在 $[1,+\infty)$ 上递增,所以 $f(x) \ge f(1) = \frac{1}{2} - a \ln 1 - \frac{1}{2} = 0$ (成立)…8分

```
而 f(1) = \frac{1}{2} - a \ln 1 - \frac{1}{2} = 0,所以 0 < a \le 1满足题意;
                ③当a>1时,\sqrt{a}>1,f(x)在\left[1,\sqrt{a}\right]上是减函数,\left[\sqrt{a},+\infty\right)上是增函数,
                所以只需 f(\sqrt{a}) \ge 0 即可,而 f(\sqrt{a}) < f(1) = 0,从而 a > 1不满足题意; …… 11 分
                综合①②③实数a的取值范围为(-\infty,0)\cup (0,1].
22. 解: (I) : C过(0,1), : b=1, \forall e=\frac{\sqrt{3}}{2}且a^2=b^2+c^2, 解得a=2, : C:\frac{x^2}{4}+y^2=1. … 3分
         (II) ①联立 y = kx + m 与 x^2 + 4y^2 = 4,得 x^2 + 4(kx + m)^2 = 4,∴ (4k^2 + 1)x^2 + 8kmx + 4m^2 - 4 = 0
                   \therefore \Delta = (8km)^2 - 4(4k^2 + 1)(4m^2 - 4) = 16(4k^2 + 1 - m^2) > 0, \quad \therefore 4k^2 + 1 > m^2,
                   设A(x_1, y_1), B(x_2, y_2), 则x_1 + x_2 = \frac{-8km}{4k^2 + 1}, x_1 x_2 = \frac{4m^2 - 4}{4k^2 + 1},
                   所以 |AB| = \sqrt{1+k^2} \cdot |x_1-x_2| = \sqrt{1+k^2} \cdot \sqrt{(x_1+x_2)^2 - 4x_1x_2}
                   = \sqrt{1+k^2} \cdot \sqrt{\left(\frac{-8km}{4k^2+1}\right)^2 - 4 \cdot \frac{4m^2-4}{4k^2+1}} = \frac{4\sqrt{1+k^2}\sqrt{4k^2+1-m^2}}{4k^2+1};
                ②: \overrightarrow{OA} \cdot \overrightarrow{AB} = 0, \therefore OA \perp AB, \emptyset k \neq 0, \triangle OA \Rightarrow \emptyset: y = -\frac{1}{k}x.
                   联立 y = kx + m, 得 y = k(-ky) + m, \therefore y_1 = \frac{m}{k^2 + 1}, x_1 = -ky_1 = \frac{-km}{k^2 + 1}, 代入 x_1^2 + 4y_1^2 = 4,
                   4k^{2} + 1 - m^{2} = 4k^{2} + 1 - \frac{4(k^{2} + 1)^{2}}{k^{2} + 4} = \frac{(4k^{2} + 1)(k^{2} + 4) - 4(k^{2} + 1)^{2}}{k^{2} + 4} = \frac{9k^{2}}{k^{2} + 4}
                   |AB|^2 = \frac{16(1+k^2)(4k^2+1-m^2)}{(4k^2+1)^2} = \frac{144(1+k^2)k^2}{(4k^2+1)^2(k^2+4)}
                   |X : |OA|^2 = (-ky_1)^2 + y_1^2 = (k^2 + 1)(\frac{m}{k^2 + 1})^2 = \frac{m^2}{k^2 + 1} = \frac{4(k^2 + 1)}{k^2 + 4}
                    \therefore \frac{|AB|^2}{|OA|^2} = \frac{36k^2}{(4k^2+1)^2} = \frac{9}{4}, \quad \text{$?=(4k^2+1)^2$, } \therefore (4k^2-1)^2 = 0, \quad \therefore k^2 = \frac{1}{4}.
```

②当 $0 < a \le 1$ 时, $0 < \sqrt{a} \le 1$,f(x)在 $[1,+\infty)$ 上是增函数,所以只需 $f(1) \ge 0$