电场、磁场和能量转化
录入者:netlab 人气指数:次 发布时间:2008年01月24日
电场、磁场和能量转化
命题趋势
电场、磁场和能量的转化是中学物理重点内容之一,分析近十年来高考物理试卷可知,这部分知识在高考试题中的比例约占13%,几乎年年都考,从考试题型上看,既有选择题和填空题,也有实验题和计算题;从试题的难度上看,多属于中等难度和较难的题,特别是只要有计算题出现就一定是难度较大的综合题;由于高考的命题指导思想已把对能力的考查放在首位,因而在试题的选材、条件设置等方面都会有新的变化,将本学科知识与社会生活、生产实际和科学技术相联系的试题将会越来越多,而这块内容不仅可以考查多学科知识的综合运用,更是对学生实际应用知识能力的考查,因此在复习中应引起足够重视。
知识概要
电、磁场中的功和能 |
电场中的功和能 |
电势能 |
由电荷间的相对位置决定,数值具有相对性,常取无限远处或大地为电势能的零点。重要的不是电势能的值,是其变化量 |
电场力的功与路径无关,仅与电荷移动的始末位置有关:W=qU |
电场力的功和电势能的变化 |
电场力做正功电势能→其他能 |
电场力做负功其他能→电势能 |
转化 |
转化 |
磁场中的功和能 |
洛伦兹力不做功 |
安培力的功 |
做正功:电能→机械能,如电动机 |
做负功:机械能→电能,如发电机 |
转化 |
转化 |
如果带电粒子仅受电场力和磁场力作用,则运动过程中,带电粒子的动能和电势能之间相互转化,总量守恒;如果带电粒子受电场力、磁场力之外,还受重力、弹簧弹力等,但没有摩擦力做功,带电粒子的电势能和机械能的总量守恒;更为一般的情况,除了电场力做功外,还有重力、摩擦力等做功,如选用动能定理,则要分清有哪些力做功?做的是正功还是负功?是恒力功还是变力功?还要确定初态动能和末态动能;如选用能量守恒定律,则要分清有哪种形式的能在增加,那种形式的能在减少?发生了怎样的能量转化?能量守恒的表达式可以是:①初态和末态的总能量相等,即E初=E末;②某些形势的能量的减少量等于其他形式的能量的增加量,即ΔE减=ΔE增;③各种形式的能量的增量(ΔE=E末-E初)的代数和为零,即ΔE1+ΔE2+…ΔEn=0。
电磁感应现象中,其他能向电能转化是通过安培力的功来量度的,感应电流在磁场中受到的安培力作了多少功就有多少电能产生,而这些电能又通过电流做功转变成其他能,如电阻上产生的内能、电动机产生的机械能等。从能量的角度看,楞次定律就是能量转化和守恒定律在电磁感应现象中的具体表现。电磁感应过程往往涉及多种能量形势的转化,因此从功和能的观点入手,分析清楚能量转化的关系,往往是解决电磁感应问题的重要途径;在运用功能关系解决问题时,应注意能量转化的来龙去脉,顺着受力分析、做功分析、能量分析的思路严格进行,并注意功和能的对应关系。
点拨解疑
【例题1】(1989年高考全国卷)如图1所示,一个质量为m,电量为-q的小物体,可在水平轨道x上运动,O端有一与轨道垂直的固定墙,轨道处在场强大小为E,方向沿Ox轴正向的匀强磁场中,小物体以初速度v0从点x0沿Ox轨道运动,运动中受到大小不变的摩擦力f作用,且f<qE,小物体与墙壁碰撞时不损失机械能,求它在停止前所通过的总路程?
【点拨解疑】首先要认真分析小物体的运动过程,建立物理图景。开始时,设物体从x0点,以速度v0向右运动,它在水平方向受电场力qE和摩擦力f,方向均向左,因此物体向右做匀减速直线运动,直到速度为零;而后,物体受向左的电场力和向右的摩擦力作用,因为qE>f,所以物体向左做初速度为零的匀加速直线运动,直到以一定速度与墙壁碰撞,碰后物体的速度与碰前速度大小相等,方向相反,然后物体将多次的往复运动。
但由于摩擦力总是做负功,物体机械能不断损失,所以物体通过同一位置时的速度将不断减小,直到最后停止运动。物体停止时,所受合外力必定为零,因此物体只能停在O点。
对于这样幅度不断减小的往复运动,研究其全过程。电场力的功只跟始末位置有关,而跟路径无关,所以整个过程中电场力做功
根据动能定理,得:
。
点评:该题也可用能量守恒列式:电势能减少了,动能减少了,内能增加了,∴
同样解得。
【例题2】如图2所示,半径为r的绝缘细圆环的环面固定在水平面上,场强为E的匀强电场与环面平行。一电量为+q、质量为m的小球穿在环上,可沿环作无摩擦的圆周运动,若小球经A点时,速度vA的方向恰与电场垂直,且圆环与小球间沿水平方向无力的作用,试计算:
(1)速度vA的大小;
(2)小球运动到与A点对称的B点时,对环在水平方向的作用力。
【点拨解疑】(1)在A点,小球在水平方向只受电场力作用,根据牛顿第二定律得:
所以小球在A点的速度。
(2)在小球从A到B的过程中,根据动能定理,电场力做的正功等于小球动能的增加量,即,
小球在B点时,根据牛顿第二定律,在水平方向有
解以上两式,小球在B点对环的水平作用力为:。
点评:分析该题,也可将水平的匀强电场等效成一新的重力场,重力为Eq,A是环上的最高点,B是最低点;这样可以把该题看成是熟悉的小球在竖直平面内作圆周运动的问题。
-q |
q |
O |
A |
B |
E |
图3 |
【点拨解疑】图(1)中虚线表示A、B球原来的平衡位置,实线表示烧断后重新达到平衡的位置,其中、分别表示OA、AB与竖直方向的夹角。A球受力如图(2)所示:重力mg,竖直向下;电场力qE,水平向左;细线OA对A的拉力T1,方向如图;细线AB对A的拉力T2,方向如图。由平衡条件得
①②
-q |
q |
O |
A |
B |
E |
图(4) |
图4 |
的拉力T2,方向如图。由平衡条件得
③④
联立以上各式并代入数据,得⑤⑥
由此可知,A、B球重新达到平衡的位置如图(4)所示。
与原来位置相比,A球的重力势能减少了⑦
B球的重力势能减少了⑧
A球的电势能增加了WA=qElcos60°⑨
B球的电势能减少了⑩
两种势能总和减少了
代入数据解得
【例题4】(2003年全国理综卷)如图5所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m。两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两杆都处于静止状态。现有一与导轨平行、大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。经过t=5.0s,金属杆甲的加速度为a=1.37m/s2,问此时两金属杆的速度各为多少?
乙甲 |
F |
图5 |
由法拉第电磁感应定律,回路中的感应电动势
回路中的电流
杆甲的运动方程
由于作用于杆甲和杆乙的安培力总是大小相等,方向相反,所以两杆的动量时为0)等于外力F的冲量
联立以上各式解得
图6 |
针对训练
1.如图6所示,长L1宽L2的矩形线圈电阻为R,处于磁感应强度为B的匀强磁场边缘,线圈与磁感线垂直。将线圈以向右的速度v匀速拉出磁场,求:①拉力F大小;②拉力的功率P;③拉力做的功W;④线圈中产生的电热Q;⑤通过线圈某一截面的电荷量q。
h |
d |
l |
1 |
2 |
3 |
4 |
v0 |
v0 |
v |
图7 |
图8 |
(A)如果B增大,vm将变大
(B)如果α变大,vm将变大
(C)如果R变大,vm将变大
(D)如果m变小,vm将变大
图9
|
(1)若棒以v0=5m/s的速率在环上向右匀速滑动,求棒滑过圆环直径OO′的瞬时(如图9所示)MN中的电动势和流过灯L1的电流。
(2)撤去中间的金属棒MN,将右面的半圆环OL2O′以OO´为轴向上翻转90º,若此时磁场随时间均匀变化,其变化率为ΔB/Δt=4T/s,求L1的功率。
5.如图10所示,电动机牵引一根原来静止的、长L为1m、质量m为0.1kg的导体棒MN上升,导体棒的电阻R为1Ω,架在竖直放置的框架上,它们处于磁感应强度B为1T的匀强磁场中,磁场方向与框架平面垂直。当导体棒上升h=3.8m时,获得稳定的速度,导体棒上产生的热量为2J,电动机牵引棒时,电压表、电流表的读数分别为7V、1A,电动机内阻r为1Ω,不计框架电阻及一切摩擦,求:
(1)棒能达到的稳定速度;
(2)棒从静止至达到稳定速度所需要的时间。
参考答案
1.解析:
,,,;;;;
特别要注意电热Q和电荷q的区别,其中q与速度无关!
2.解:⑴由于线圈完全处于磁场中时不产生电热,所以线圈进入磁场过程中产生的电热Q就是线圈从图中2位置到4位置产生的电热,而2、4位置动能相同,由能量守恒Q=mgd=0.50J
⑵3位置时线圈速度一定最小,而3到4线圈是自由落体运动因此有
v02-v2=2g(d-l),得v=2m/s
⑶2到3是减速过程,因此安培力减小,由F-mg=ma知加速度减小,到3位置时加速度最小,a=4.1m/s2
3.B、C
4.解析:(1)E1=B2a v=0.2×0.8×5=0.8V①
I1=E1/R=0.8/2=0.4A②
(2)E2=ΔФ/Δt=0.5×πa2×ΔB/Δt=0.32V③
P1=(E2/2)2/R=1.28×102W
5.解析:(1)电动机的输出功率为:W
电动机的输出功率就是电动机牵引棒的拉力的功率,所以有
其中F为电动机对棒的拉力,当棒达稳定速度时
感应电流
由①②③式解得,棒达到的稳定速度为m/s
(2)从棒由静止开始运动至达到稳定速度的过程中,电动机提供的能量转化为棒的机械能和内能,由能量守恒定律得:
解得t=1s