电势差
录入者:netlab 人气指数: 次 发布时间:2009年01月16日
【教学目的】
1、理解电势差的概念及其定义式;知道电势差的值与零电势的选择无关;知道电势差与电势的关系。
2、了解电势差与电场强度的关系。了解示波器的工作原理。
【教学重点】
掌握电势差与电场力做功的关系;掌握电势差与场强的关系式U=Ed的使用条件及式中d的含义;能初步运用力学知识综合解决带电粒子在匀强电场中的运动问题。
【教学难点】
从基本概念出发推出各常用的推论
【教学媒体】
【教学安排】
【新课导入】
回顾归纳电场与重力场的物理量类比。
物理量的含义 |
重力场 |
电场 |
表征场的作用力的强弱和方向 |
重力加速度g=G/m |
场强E=F/q |
场的势能 |
重力势能EP=Gh |
电势能EP=qф |
表征场的能的性质 |
高度h |
电势ф=EP/q |
表征场力做功(场势能变化量) |
重力功W=-ΔEP = GΔh=G(h0-ht) |
电场力做功W=-ΔEP =q(ф0-фt)=qU |
|
高度差hAB= hA-hB |
电势差 |
【新课内容】
1. 电势差与电场力做功:
以上表格灰色部分留空,让学生通过对比和类比,可以得出电场力做功与零电势设定无关,而是取决于检验电荷的电量和在电场中移动的初末两点的电势的差值。我们称之为电势差,用符号U表示, ;单位是伏特(V)。式中q用C做单位,W用J做单位,
这里补充一个单位,由于基元电荷电量很小,所以我们对应给出功和能的另一个较小单位——电子伏特,他由W=qU得出,当q取1e,U为1V时,功W为一个电子伏,符号为eV。1eV=1.6×10-19J.
板书:1、两点间电势的差值,称为这两点间的电势差,也叫电压。
①国际单位制中1J= 1C ×1V;在其它单位制中还有1eV=1.6×10-19J=1e×1V.
②电压是由场决定的量;③电压与零电势的选取无关;
方法一、利用这个公式时,qU都取绝对值,算出的功W也为绝对值。正负号另外判断。
例1:设电场中AB两点电势差大小U=2.0×102V,带正电粒子的电量q=1.2×10- 8C ,把q从A点移到B点,电场力做了多少功?是正功还是负功?设фA<фB。
解:W=qU=1.2×10-8×2.0×102J =2.4×10-6J
因为фA<фB,q为正电荷,故q在B点的电势能大于A点电势能,即从A点移到B点电势能增加,即电功力做负功。
方法二、公式中带入正负号计算,U与W是对应的,由A到B电场力做功对应AB电势差( );反之,由B到A电场力做功对应BA电势差( )。
解:WAB=qUAB=q(ФA-фB)=1.2×10-8×(-2.0×102J)= - 2.4×10-6J
板书:④电势差是标量,它的正负表示两点间电势的高低状况。
有了这个求电场力做功的方法,只要测出电场中某两点的电压和要移动的电荷电量,我们就可以结合高一所学的功和能的知识来求解电荷在两点间移动的问题。
例2:书P36/例——一个质子以初速度 射入一个由两块带电金属板组成的区域。两板相距为 20cm ,金属板之间是匀强电场,电场强度为 (此处先给出N/C的单位,等会再推导到V/m),求(1)质子由板上小孔射出时的速度大小。(2)两板间的电势差是多少?(增补一个问题)
解:(1)质子做匀加速运动,全程只有电场力做正功
W=Fd=qEd=
根据动能定理,
推出
(2)电场力做功在电场力是恒力的情况下可以用W=Fd=qEd来运算,当然,也可以用任何电场通用的公式WAB=qUAB来运算,所以有UAB=WAB/q=
2. 电场强度与电势差的关系:
提问1:从上面的例题中你有什么收获呢?
引导学生讨论。得出电场力做功的两种运算方法以及它们的适用条件。
提问2:由于场强是跟电场对电荷的作用力相联系的,电势差是跟电场力移动电荷做功相联系的。因此场强与电势差之间必然有什么关系。大家能得出它们之间的关系式吗?
让学生讨论得出:W=qU=qEd 得出U=Ed
提问3:这个公式里的各个量表示什么意义?公式有没有限制使用范围?
引导学生讨论得出式中的U为电场中两点间的电势差,E为场强,d为沿两点连线在电场线方向的投影线的距离。该公式只适用于匀强电场。
提问4:该公式的正负号怎么处理呢?
教师帮助学生归纳:电势差是标量,场强E是矢量,二者正负号的意义不同,所以该公式不带入符号,只取绝对值运算,得出来的U只表示两点间电压大小,而电势的高低要另行判断。
板书:2、匀强电场中有U=Ed,其中U为电场中两点间的电势差,E为场强,d为沿两点连线在电场线方向的投影线的距离。
①公式只取绝对值运算
前面讲过,沿着电场线方向,也就是沿着场强的方向,电势越来越低,从右图中可以看出沿AB、AD、AC方向,电势都在降低,但沿AB方向距离最短,即降低得最快,而AB方向即为场强方向,可见场强的方向是指向电势降低最快的方向。
板书:②场强方向是指向电势降低最快的方向。
由U=Ed,得 E=U/d,可得场强的另一个单位:V/m。
板书:③场强两个单位伏/米,牛/库是相等的。
例3:如右上图,匀强电场电场线与AC平行,把10- 8C 的负电荷从A移至B的电场力,做功6×10-8J,AB长 6cm .AB与AC夹角为60º。求:(1)场强方向;(2)设 B处电势为 1V,则A处电势为多少?(3)场强为多少?电子在A点电势能为多少?
解 (1)将负电荷从A移至B,电场力做正功,所以所受电场力方向沿A至C,又因为是负电荷,场强方向与负电荷受力方向相反,所以场强方向应为C至A方向。(2)即AB两点间电势差为 6V。
或用负电荷沿电场线方向电势能增加,电场力做负功的知识得本题负电荷是逆着电场线走的,即电场线由C到A;
或用公式UAB=ФA-фB=WAB/q= 6×10-8/(-10-8J)= - 6V 即A比B电势低6V。即A点的电势为-5V。
(3)AB沿场强方向距离为d=Abcos60º= 0.03m ;所以有E=U/d=6V/ 0.03m = 200V/m。
(4) 电子在A点的电势能 E=qфA=(-e)×(-5V)=5eV
(注:计算电势能时要带号运算。)
巩固课练:一个10- 5C 的电荷从电场外移到电场内一点A,外力克服电场力做功0.006J,则A点电势为多少?如果此电荷从电场外移到电场内另一点 B时,电场力做功是 0.002 J,则AB两点间电势差UAB为多少?如果有另一个电量是 0. 2C 的负电荷从A移到 B,则电场力做正功还是负功,大小是多少?
解 (1)正电荷在场外时电势能、电势均为零,从场外移至A点电场力做负功,所以电势能增加,即在A点正电荷具有的电势能为正,A点的电势也为正,又因为W=qUA∞,所以
UA∞=W/q=0.006J/10- 5C =6×102V, U∞=0,UA∞=UA-U∞, UA=6×102V
(2)W=qUAB,UAB=W/q=0.002J/10- 5C =2×102V。
(3) 将10- 5C 的正电荷从A移至B时电场力做正功,如果将负电荷从A移到B,负电荷所受电场力方向与正电荷所受电场力方向相反,电场力对正电荷做正功,对负电荷做功为负,大小为 W=qUAB= 0.2C ×2×102V=40J
3. 带电粒子在匀强电场中的运动
“带电粒子”一般是指电子、质子及其某些离子或原子核等微观的带电体,它们的质量都很小,例如:电子的质量仅为0.91×10 -30Kg 、质子的质量也只有1.67×10 -27Kg 。(有些离子和原子核的质量虽比电子、质子的质量大一些,但从“数量级”上来盾,仍然是很小的。)如果近似地取g= 10m /s2,则电子所受的重力也仅仅是meg=0.91×10-30×10N=0.91×10-29N。但是电子的电量都为q=1.60×10 -19C (虽然也很小,但相对而言10-19比10-30就大了10-11倍),如果一个电子处于E=1.0×104N/C的匀强电场中(此电场的场强并不很大),那这个电子所受的电场力F=qE=1.60×10-19×1.0×104N=1.6×10-15N,看起来虽然也很小,但是比起前面算出的重力就大多了(从“数量级”比较,电场力比重力大了1014倍),由此可知:电子在不很强的匀强电场中,它所受的电场力也远大于它所受的重力——qE>>meg。所以在处理微观带电粒子在匀强电场中运动的问题时,一般都可忽略重力的影响。
但是要特别注意:有时研究的问题不是微观带电粒子,而是宏观带电物体,那就不允许忽略重力影响了。例如:一个质量为1mg的宏观颗粒,变换单位后是1×10 -6Kg ,它所受的重力约为mg=1×10-5N,有可能比它所受的电场力还大,因此就不能再忽略重力的影响了。
由于不同电场差异很大,所以粒子在电场中所受电场力很复杂,大多只能用动能定理来解决。但在匀强电场中,带电粒子所收的电场力是最为简单的恒力,我们还可以综合运用力学的很多知识来分析。
①若带电粒子在电场中所受合力为零时,即F合=0时,粒子将保持静止状态或匀速直线运动状态。例1:手册P26/12(解略)
②若F合≠0且与初速度方向在同一直线上,带电粒子将做匀加速或匀减速直线运动。(匀变速直线运动)如右图打入正电荷,将做匀加速直线运动。打入负电荷,将做匀减速直线运动。我们把这样的电场称为加速电场。
这时可以用F合=ma结合运动学的知三求二公式来求解。也可以用W=qU=ΔEk求解。
③若F合≠0且与初速度方向有夹角(不等于0°,180°),带电粒子将做曲线运动。(提问:圆周还是抛体?)带电粒子做匀变速曲线运动即类抛体运动。若不计重力,初速度v0⊥E,带电粒子将在电场中做类平抛运动。
复习:物体在只受重力的作用下,被水平抛出,在水平方向上不受力,将做匀速直线运动,在竖直方向上只受重力,做初速度为零的自由落体运动。物体的实际运动为这两种运动的合运动。
例2:板间距为d,板长为L,初速度v0,板间电压为U,带电粒子质量为m,带电量为+q。
u 请分析粒子的运动情况。——粒子在与电场方向垂直的方向上做匀速直线运动,x=v0t;在沿电场方向做初速度为零的匀加速直线运动。
图中的Y称为侧移,又叫横向位移,X为纵向。我们把这样的电场称为偏转电场。
(2)若粒子能穿过电场,而不打在极板上,侧移量为多少呢?——
从计算中可发现,侧移量与电压成正比,所以电压大1倍时粒子侧移也大一倍。
而且射出时的速度方向与初速度方向相比已经发生了偏转,图中末速度与初速度的夹角ф叫偏转角。
(1) 试证明vt的反向延长线与v0的延长线的交点在L/2的地方
以上结论均适用于带电粒子能从电场中穿出的情况。如果带电粒子没有从电场中穿出,此时v0t不再等于板长L,应怎么分析?(——Y已知,求X)
带电粒子在匀强电场中的运动,是一种力电综合问题。
解答这种问题经常运用电场和力学两方面的知识和规律,具体内容如下:
所需电场的知识和规律有:E →F=qE;W=qU;E ;电力线的性质和分布;等势面的概念和分布:电势、电势差、电势能……
所需力学的知识和规律有:牛顿第二运动定律F=ma;动能定理W=ΔEk;动能和重力势能的概念和性质;能的转化和守恒定律;匀变速直线运动的规律;匀变速直线运动的规律;平抛物体运动的规律(目前涉及/斜抛运动的定量问题要求得不多)
4. 示波器的工作原理
示波管的结构如图,示波管主要由电子枪、 偏转电极和荧光屏三部分组成。管内抽成真空,电子枪通电后发射电子,电子在电子枪与正板之间被电场作用加速,然后进入偏转电场。偏转电极一般有相互平行的两组,一组控制水平偏转,一组控制竖直偏转。电子经过偏转电场后打到荧光屏上使荧光粉发光。——这也体现了运动的独立性。
从前面我们已经知道侧移与电压成正比,尽管电子离开偏转电场后到荧光屏之间还有一段匀速直线运动,但我们仍然可以证明电子打在荧光屏上的亮点位置与入射位置相比其侧移量仍是与电压成正比的。——这一点留做今天的附加题,有兴趣的同学可以去证明一下。
一般来说,我们会在水平电场上加扫描电压,其电压随时间变化如右图,因此荧光屏上的光斑也会随时间由左向右匀速移动,这时如果在偏转电极Y1、Y'上加一按正弦规律变化的电压,电子就要同时参与了X和Y两个互相垂直方向的分运动。在X方向的分运动仍然不变,但在Y方向上多了分位移与Y电压成正比的分运动。再加上人眼的视觉暂留,于是示波器就显示出与Y电压变化规律一样的图形来。
提问:如果示波器X方向加定值电压,Y也加定值电压,那会显示什么情况呢?——应该是偏离中心的一个亮点。
【课后作业】
第一课时:教材全练P19-220,比较电势、电势差、电势能、电功以及电场强度这些量,找出它们之间的关系,和影响它们的原因。
第二课时:教材全练P21-22