§3.2.2函数模型的应用实例(Ⅲ)
录入者:netlab 人气指数: 次 发布时间:2009年01月12日
§ 3.2.2 函数模型的应用实例(Ⅲ)
一、教学目标
1、知识与技能 能够收集图表数据信息,建立拟合函数解决实际问题。
2、过程与方法 体验收集图表数据信息、拟合数据的过程与方法,体会函数拟合的思想方法。
3、情感、态度、价值观 深入体会数学模型在现实生产、生活及各个领域中的广泛应用及其重要价值。
二、教学重点、难点:
重点:收集图表数据信息、拟合数据,建立函数模解决实际问题。
难点:对数据信息进行拟合,建立起函数模型,并进行模型修正。
三、学学与教学用具
1、学法:学生自查阅读教材,尝试实践,合作交流,共同探索。
2、教学用具:多媒体
四、教学设想
(一)创设情景,揭示课题
2003年5月8日 ,西安交通大学医学院紧急启动“建立非典流行趋势预测与控制策略数学模型”研究项目,马知恩教授率领一批专家昼夜攻关,于 5月19日 初步完成了第一批成果,并制成了要供决策部门参考的应用软件。
这一数学模型利用实际数据拟合参数,并对全国和北京、山西等地的疫情进行了计算仿真,结果指出,将患者及时隔离对于抗击非典至关重要、分析报告说,就全国而论,菲非典病人延迟隔离1天,就医人数将增加1000人左右,推迟两天约增加工能力100人左右;若外界输入1000人中包含一个病人和一个潜伏病人,将增加患病人数100人左右;若 4月21日 以后,政府示采取隔离措施,则高峰期病人人数将达60万人。
这项研究在充分考虑传染病控制中心每日工资发布的数据,建立了非典流行趋势预测动力学模型和优化控制模型,并对非典未来的流行趋势做了分析预测。
本例建立教学模型的过程,实际上就是对收集来的数据信息进行拟合,从而找到近似度比较高的拟合函数。
(二)尝试实践 探求新知
例1.某地区不同身高的未成年男性的体重平均值发下表
(身高:cm;体重:kg)
身高 |
60 |
70 |
80 |
90 |
100 |
110 |
体重 |
6.13 |
7.90 |
9.99 |
12.15 |
15.02 |
17.50 |
身高 |
120 |
130 |
140 |
150 |
160 |
170 |
体重 |
20.92 |
26.86 |
31.11 |
38.85 |
47.25 |
55.05 |
1) 根据表中提供的数据,建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重与身高ykg与身高xcm的函数模型的解析式。
2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为 175cm ,体重为 78kg 的在校男生的体重是事正常?
探索以下问题:
1)借助计算器或计算机,根据统计数据,画出它们相应的散点图;
2)观察所作散点图,你认为它与以前所学过的何种函数的图象较为接近?
3)你认为选择何种函数来描述这个地区未成年男性体重 与身高 的函数关系比较合适?
4)确定函数模型,并对所确定模型进行适当的检验和评价.
5)怎样修正所确定的函数模型,使其拟合程度更好?
本例给出了通过测量得到的统计数据表,要想由这些数据直接发现函数模型是困难的,要引导学生借助计算器或计算机画图,帮助判断.
根据散点图,利用待定系数法确定几种可能的函数模型,然后进行优劣比较,选定拟合度较好的函数模型.在此基础上,引导学生对模型进行适当修正,并做出一定的预测. 此外,注意引导学生体会本例所用的数学思想方法.
例2. 将沸腾的水倒入一个杯中,然后测得不同时刻温度的数据如下表:
时间(S) |
60 |
120 |
180 |
240 |
300 |
温度(℃) |
86.86 |
81.37 |
76.44 |
66.11 |
61.32 |
时间(S) |
360 |
420 |
480 |
540 |
600 |
温度(℃) |
53.03 |
52.20 |
49.97 |
45.96 |
42.36 |
1)描点画出水温随时间变化的图象;
2)建立一个能基本反映该变化过程的水温 (℃)关于时间 的函数模型,并作出其图象,观察它与描点画出的图象的吻合程度如何.
3)水杯所在的室内温度为 18℃ ,根据所得的模型分析,至少经过几分钟水温才会降到室温?再经过几分钟会降到 10℃ ?对此结果,你如何评价?
本例意图是引导学生进一步体会,利用拟合函数解决实际问题的思想方法,可依照例1的过程,自主完成或合作交流讨论.
课堂练习:某地新建一个服装厂,从今年7月份开始投产,并且前4个月的产量分别为1万件、1 .2万件、1.3万件、1.37万件. 由于产品质量好,服装款式新颖,因此前几个月的产品销售情况良好. 为了在推销产品时,接收定单不至于过多或过少,需要估测以后几个月的产量,你能解决这一问题吗?
探索过程如下:
1)首先建立直角坐标系,画出散点图;
2)根据散点图设想比较接近的可能的函数模型:
一次函数模型:
二次函数模型:
幂函数模型:
指数函数模型: ( >0, )
利用待定系数法求出各解析式,并对各模型进行分析评价,选出合适的函数模型;由于尝试的过程计算量较多,可同桌两个同学分工合作,最后再一起讨论确定.
(三)归纳小结,巩固提高.
通过以上三题的练习,师生共同总结出了利用拟合函数解决实际问题的一般方法,指出函数是描述客观世界变化规律的重要数学模型,是解决实际问题的重要思想方法. 利用函数思想解决实际问题的基本过程如下:
检验 |
用函数模型解决实际问题在于 |
选择函数模型 |
求函数模型 |
画散点图 |
收集数据 |
符合
实际
不符合实际
(四)布置作业:
作业:教材P120习题32(B组)第2、3题:
- 上一篇:§3.1.2用二分法求方程的近似解
- 下一篇:函数与映射